An Algorithm to Develop a Satellite-Based Atmospheric River Database

(a) ERA5 IVT

ERA5 truth

60°

30°N

0°

30°S

60°S

90

¹Duke University, ²Ohio State University

ERA5 reconstruction

Satellite reconstruction

May 6, 2025 @ IOVWST Meeting (virtual participation)

Atmospheric rivers defined with IVT versus IWV

Integrated Water Vapor (IWV)

(a) Length and width criteria

Ralph et al. (2004)

- Different definitions and detection algorithms have been proposed (see Shields et al. 2018 for a recent review).
- Atmospheric reanalyses have been popular datasets to compute IVT.
- Satellite measurements have also been extensively used, but mostly for IVV.

Estimating IVT with satellite measurements: a recent attempt

$$\langle U_g \rangle = \frac{U_{925} \times 37.5 + U_{850} \times 112.5 + U_{700} \times 125 + U_{600} \times 50}{(37.5 + 112.5 + 125 + 50)}$$

$$\langle U_g \rangle = \frac{V_{925} \times 37.5 + V_{850} \times 112.5 + V_{700} \times 125 + V_{600} \times 50}{(37.5 + 112.5 + 125 + 50)}$$

 $\text{GIVT} = \frac{1}{\left(\text{IWV} \times \langle U_g \rangle\right)^2 + \left(\text{IWV} \times \langle V_g \rangle\right)^2}$

- Purely observational and physics based
- Globally covered with high resolutions in space and time

Estimating IVT with satellite measurements: our attempt

- Physics informed but statistically trained
- Relying on IWV and 10-m wind (satellite-based; ocean only)
- Relatively longer period: 1990-2022 (interannual studies)
- No restriction on geostrophy
- Another independent satellite-based approach for cross validation
- Data
 - IWV: SSM/I and SSMIS (Wentz et al. 2012)
 - 10-m ocean surface wind: National Centers for Environmental Information Blended Seawinds version 2.0 (Saha and Zhang 2022)
 - 0.25°x0.25°; daily; from 1990 to 2023

Consistent best-fit parameters found across different reanalysis products

Performance of IVT reconstruction in ERA5

• Generally good agreement (r>0.8) except for equatorial cold tongue regions (due to weak IVT variability).

AR example on December 16, 2016

AR detection algorithm (Guan and Waliser 2015): IVT > 85% and 100 kg/m/s/; length > 2000 km; length-to-width-ratio > 2; poleward & away from the equator

Reconstructed AR frequency (climatology)

 Satellite-based, reconstructed IVT has a generally lower climatological AR frequency, except for coastal Northwestern Pacific.

Reconstructed AR frequency (interannual variations)

 Interannual variations in AR frequency are generally correlated between ERA5 and satellite-based reconstruction but can significantly differ over higher-latitudes oceans.

Theoretical basis

Exponentially decaying vapor mixing ratio: C-shape tropospheric relative humidity: Linear wind profile:

$$q(z) = q_s e^{-z/H_w} \mathcal{H}(z)$$
$$\mathcal{H}(z) = 1 - lz$$
$$U(z) = U_{10} + kz$$

 $H_w \approx 2$ km is the scale height of water vapor q_s is the surface saturation vapor mixing ratio l > 0 in the lower troposphere

Sign of k varies in space

$$IWV \equiv \int_0^\infty q(z)dz = q_s H_w - lq_s H_w^2$$
$$UVT \equiv \int_0^\infty q(z)U(z)dz = \dots = U_{10}IWV + kH_w IWV - klq_s H_w^3$$

 $UVT_{re} = (A_u U_{10} + B_u) \cdot IWV + C_u$

Theory predicts that: $A_u \approx 1;$ $B_u \sim k$ $C_u \sim -B_u q_s$

Hu and Liu, in prep.

Theoretical basis

Exponentially decaying vapor mixing ratio: C-shape tropospheric relative humidity: Linear wind profile: $q(z) = q_s e^{-z/H_w} \mathcal{H}(z)$ $\mathcal{H}(z) = 1 - lz$ $U(z) = U_{10} + kz$

l > 0 in the lower troposphere

 $H_w \approx 2$ km is the scale height of water vapor q_s is the surface saturation vapor mixing ratio l > 0 in the lower troposphere

Sign of k varies in space

Theory predicts that:

 $A_u \approx 1;$

Results based on ERA5

Hu and Liu, in prep.

Extreme precipitation frequency vs.AR frequency

- Satellite-based ARs agree better with satellite-based extreme precipitation events for the western U.S.
- Atmospheric reanalysis is self consistent (i.e. AR and precipitation) but may have mismatch with satellite observations.

Extreme precipitation (mm/day) vs.AR IVT (kg/m/s)

- Satellite-based ARs agree better with satellite-based extreme precipitation events for the western U.S.
- Atmospheric reanalysis is self consistent (i.e. AR and precipitation) but may have mismatch with satellite observations.

Summary

- A physics-informed algorithm was developed to reconstruct IVT from satellite-based measurements of IWV and ocean near-surface winds.
- Satellite-based AR database has similar spatial structures as atmospheric reanalysis products but exhibits distinctive features.
- Applications
 - Exploring satellite-based AR-extreme rainfall relation (better agreement than reanalysis AR)
 - Evaluating model bias in moisture transport (connection to wind shear, humidity profile, etc.)
 - Reducing data storage for high-res simulations (only 2-D IWV and surface wind needed to obtain IVT)

Liu, T., & Hu, S. (2025). An algorithm to develop a satellite-based atmospheric river database. *Geophysical Research Letters*, 52(5), e2024GL111316.